The QAE mirrors the three‑body problem: Development (Physics Laboratory), Live Trading (Mission Control), and Client (Observatory). Data flows, control signals, and feedback loops create complex orbital interactions analogous to gravitational dynamics.
graph TD DEV["Physics Laboratory (Dev)"] -->|Data Pipelines| LIVE["Mission Control (Live Trading)"] LIVE -->|Signals / Telemetry| CLIENT["Observatory (Client)"] CLIENT -->|Feedback / Controls| LIVE DEV -->|Model Artifacts| LIVE
From ingestion to deployment, kinematic feature transforms, Lagrangian dynamics, and topological analysis (persistent homology) power strategy orchestration.
graph LR
subgraph "🎯 Data Sources - Fluid Inlets"
A1[Exchange APIs<br/>High-Pressure Feed]
A2[Market Data Vendors<br/>Turbulent Flow]
A3[Alternative Data<br/>Laminar Stream]
A4[Proprietary Data<br/>Controlled Injection]
end
subgraph "🔄 Dagster Orchestration - Fluid Mixing Chamber"
B1[Data Assets<br/>Pressure Vessels]
B2[Resources<br/>Flow Regulators]
B3[Schedules & Sensors<br/>Pumps & Valves]
B4[Observability<br/>Flow Meters]
end
subgraph "⚗️ Kedro Transformation - Chemical Reactor"
C1[Data Catalog<br/>Reaction Chamber]
C2[Nodes<br/>Catalysts]
C3[Pipelines<br/>Reaction Pathways]
end
subgraph "🚀 Kinematic Engine - Plasma Accelerator"
D1[Quaternion Mapping<br/>Ionization Chamber]
D2[Kinematic Chain<br/>Particle Accelerator]
D3[Feature Generation<br/>Fusion Reactor]
end
subgraph "🎯 ML Pipeline - Energy Conversion"
E1[Model Training<br/>Thermodynamic Process]
E2[Feature Engineering<br/>Heat Exchanger]
E3[Prediction Generation<br/>Energy Output]
end
A1 --> B1 --> C1 --> D1 --> E1
A2 --> B2 --> C2 --> D2 --> E2
A3 --> B3 --> C3 --> D3 --> E3
A4 --> B4
| Quantity | Analogy | Financial Interpretation |
|---|---|---|
| Energy | L = T − V | Risk budget vs. alpha potential (kinetic vs. potential) |
| Momentum | p = m·v | Trend persistence and capital mass effects |
| Angular Momentum | L = r × p | Rotational regimes in quaternion space |
def system_lagrangian(state, params):
q = state["quaternion"]
omega = state["angular_velocity"]
I = params["inertia_tensor"]
T = 0.5 * float(omega.T @ (I @ omega))
V = float(params["potential"](state))
return T - V
# Financial Energy Conservation Law
class FinancialEnergyConservation:
def __init__(self):
self.total_system_energy = 0
def calculate_portfolio_energy(self, positions, velocities, accelerations):
"""E = (1/2)mv² + kinetic_energy_from_acceleration"""
kinetic_energy = 0.5 * sum(
mass * velocity**2 for mass, velocity in zip(positions, velocities)
)
potential_energy = sum(
0.5 * mass * acceleration**2 for mass, acceleration in zip(positions, accelerations)
)
return kinetic_energy + potential_energy
def validate_energy_conservation(self, initial_energy, final_energy, tolerance=1e-6):
"""Check if energy is conserved within tolerance"""
return abs(initial_energy - final_energy) < tolerance
# Financial Momentum Conservation
class MomentumConservation:
def calculate_portfolio_momentum(self, positions, velocities):
"""p = mv (position * velocity)"""
return sum(pos * vel for pos, vel in zip(positions, velocities))
def validate_trade_execution(self, pre_trade_momentum, post_trade_momentum):
"""Validate that momentum is conserved during trade execution"""
return abs(pre_trade_momentum - post_trade_momentum) < 1e-10
# Market Rotation Angular Momentum
class AngularMomentum:
def calculate_market_angular_momentum(self, quaternion_states):
"""L = Iω (Angular momentum from quaternion rotations)"""
angular_momenta = []
for q in quaternion_states:
# Extract rotation axis and angle
axis, angle = q.to_axis_angle()
# Calculate angular momentum vector
L = q.w * axis # Simplified calculation
angular_momenta.append(L)
return sum(angular_momenta)
def detect_regime_change(self, angular_momentum_history):
"""Detect market regime changes from angular momentum shifts"""
threshold = 0.1
current = angular_momentum_history[-1]
previous = angular_momentum_history[-2]
return abs(current - previous) > threshold